Road Trip

The objective of this activity is to explore how to calculate average rates of change in the context of a road trip. Students create graphs given specific scenarios and estimate the average speed between two points. This activity also leads into a discussion about how average rate of change compares to the instantaneous rate of change.

A road trip to Charlotte

Rashmi is taking a trip from Durham, NC to Charlotte, NC this weekend. It takes Rashmi 3 hours to drive the 150 mile trip. What is Rashmi's average speed for her trip?

Choose your own adventure

Choose one of the scenarios below. Sketch a possible graph that would represent Rashmi's Distance from Durham over Time for that scenario. Then describe the rate of change throughout Rashmi's trip in your chosen scenario.

- Rashmi sets her car's cruise control to 50 mph for the entire trip.
- Rashmi's foot pushes steadily further down on the accelerator as she gets closer to Charlotte.
- Rashmi gets tired and lets up on the pedal throughout the trip.

A graphical representation

The figure below shows the graph of the function $f(t)$ which represents Rashmi's distance from Durham as a function of elapsed time t.

Think about what is happening during Rashmi's trip. Pick 2 or 3 key features of the graph and explain what they might mean in context.

Calculate an average rate

Two points on Rashmi's trip have been marked, $A(1,62)$ and $B(2,90)$, as shown below.

1. What do the values of these coordinates represent?
2. Describe how you could use these points to approximate Rashmi's average speed between hour 1 and hour 2 of her trip? Use your method to determine her average speed between these times.

How fast was she going?

Rashmi wants to know how fast she was going at exactly the 2 hour mark. Do you think her average speed from the previous question is an overestimate or an underestimate of her speed at the 2 hour mark? Explain your answer.

